Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Lipid Res ; 80: 101063, 2020 11.
Article in English | MEDLINE | ID: mdl-32888959

ABSTRACT

All living beings have an optimal temperature for growth and survival. With the advancement of global warming, the search for understanding adaptive processes to climate changes has gained prominence. In this context, all living beings monitor the external temperature and develop adaptive responses to thermal variations. These responses ultimately change the functioning of the cell and affect the most diverse structures and processes. One of the first structures to detect thermal variations is the plasma membrane, whose constitution allows triggering of intracellular signals that assist in the response to temperature stress. Although studies on this topic have been conducted, the underlying mechanisms of recognizing thermal changes and modifying cellular functioning to adapt to this condition are not fully understood. Recently, many reports have indicated the participation of sphingolipids (SLs), major components of the plasma membrane, in the regulation of the thermal stress response. SLs can structurally reinforce the membrane or/and send signals intracellularly to control numerous cellular processes, such as apoptosis, cytoskeleton polarization, cell cycle arresting and fungal virulence. In this review, we discuss how SLs synthesis changes during both heat and cold stresses, focusing on fungi, plants, animals and human cells. The role of lysophospholipids is also discussed.


Subject(s)
Adaptation, Physiological/physiology , Eukaryota/physiology , Sphingolipids/physiology , Animals , Cold-Shock Response/physiology , Fungi/physiology , Heat-Shock Response/physiology , Humans , Plant Physiological Phenomena , Sphingolipids/metabolism , Temperature
2.
Folia Microbiol (Praha) ; 65(2): 393-405, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31401762

ABSTRACT

Nosocomial infections are an important cause of morbi-mortality worldwide. The increase in the rate of resistance to conventional drugs in these microorganisms has stimulated the search for new therapeutic options. The nitro moiety (NO2) is an important pharmacophore of molecules with high anti-infective activity. We aimed to synthesize new nitro-derivates and to evaluate their antibacterial and anti-Candida potential in vitro. Five compounds [3-nitro-2-phenylchroman-4-ol (3); 3-nitro-2-phenyl-2H-chromene (4a); 3-nitro-2-(4-chlorophenyl)-2H-chromene (4b); 3-nitro-2-(4-fluorophenyl)-2H-chromene (4c), and 3-Nitro-2-(2,3-dichlorophenyl)-2H-chromene (4d)] were efficiently synthesized by Michael-aldol reaction of 2-hydroxybenzaldehyde with nitrostyrene, resulting in one ß-nitro-alcohol (3) and four nitro-olefins (4a-4d). The antibacterial and anti-Candida potentials were evaluated by assaying minimal inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and minimum bactericidal concentration (MBC). Mono-halogenated nitro-compounds (4b and 4c) showed anti-staphylococcal activity with MIC values of 15.6-62.5 µg/mL and MBC of 62.5 µg/mL. However, the activity against Gram-negative strains was showed to be considerably lower and our data suggests that this effect was associated with the outer membrane. Furthermore, nitro-compounds 4c and 4d presented activity against Candida spp. with MIC values ranging from 7.8-31.25 µg/mL and MFC of 15.6-500 µg/mL. In addition, these compounds were able to induce damage in fungal cells increasing the release of intracellular material, which was associated with actions on the cell wall independent of quantitative changes in chitin and ß-glucan. Together, these findings show that nitro-compounds can be exploited as anti-staphylococcal and anti-Candida prototypes.


Subject(s)
Anti-Infective Agents/pharmacology , Nitro Compounds/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Bacteria/drug effects , Bacteria/growth & development , Candida/drug effects , Candida/growth & development , Cross Infection/drug therapy , Cross Infection/microbiology , Drug Design , Humans , Microbial Sensitivity Tests , Nitro Compounds/chemical synthesis , Nitro Compounds/chemistry
3.
Med Mycol ; 57(1): 84-91, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-29471408

ABSTRACT

Cryptococcosis is an opportunistic or primary fungal infection considered to be the most prevalent fatal fungal disease worldwide. Owing to the limited number of available drugs, it is necessary to search for novel antifungal compounds. In the present work, we assessed the antifungal efficacy of three thiazole derivatives (1, 2, and 3). We conducted in vitro and in vivo assays to investigate their effects on important virulence factors, such as capsule and biofilm formation. In addition, the phagocytosis index of murine macrophages exposed to compounds 1, 2, and 3 and the in vivo efficacy of 1, 2, and 3 in Galleria mellonella infected with Cryptococcus spp. were evaluated. All compounds exhibited antifungal activity against biofilms and demonstrated a reduction in biofilm metabolic activity by 43-50% for C. gattii and 26-42% for C. neoformans. Thiazole compounds promoted significant changes in the capsule thickness of C. gattii compared to that of C. neoformans. Further examination of these compounds suggests that they can improve the phagocytosis process of peritoneal murine macrophages in vitro, causing an increase in the phagocytosis rate. Survival percentage was examined in the invertebrate model Galleria mellonella larvae, and only compound 3 could increase the survival at doses of 5 mg/kg after infection with C. gattii (P = .0001) and C. neoformans (P = .0007), similar to fluconazole at 10 mg/kg. The results demonstrated that thiazole compounds, mainly compound 3, have potential to be used for future studies in the search for new therapeutics for cryptococcosis.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Cryptococcosis/microbiology , Cryptococcus/drug effects , Cryptococcus/pathogenicity , Thiazoles/pharmacology , Virulence Factors/antagonists & inhibitors , Animals , Antifungal Agents/chemistry , Biofilms/growth & development , Cells, Cultured , Cryptococcosis/immunology , Disease Models, Animal , Fungal Polysaccharides/biosynthesis , Larva/microbiology , Larva/physiology , Macrophages/drug effects , Macrophages/microbiology , Mice , Molecular Structure , Moths , Phagocytosis/drug effects , Survival Analysis , Thiazoles/chemistry
4.
Med Mycol ; 57(3): 332-339, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-29945180

ABSTRACT

Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin American countries. Amphotericin B, sulfonamides, and azoles may be used in the treatment of PCM. However, the high toxicity, prolonged course of treatment, and significant frequency of disease relapse compromise their use. Therefore, there is a need to seek new therapeutic options. We conducted tests with thiosemicarbazone of lapachol (TSC-lap) to determine the antifungal activity and phenotypic effects against several isolates of Paracoccidioides spp. In addition, we evaluated the toxicity against murine macrophages and the ability to enhance phagocytosis. Further, we verified that TSC-lap was active against yeasts but did not show any interaction with the drugs tested. The TSC-lap showed no toxicity at the concentration of 40 µg/ml in macrophages, and at 15.6 µg/ml it could increase the phagocytic index. We observed that this compound induced in vitro ultrastructural changes manifested as withered and broken cells beyond a disorganized cytoplasm with accumulation of granules. We did not observe indications of activity in the cell wall, although membrane damages were noted. We observed alterations in the membrane permeability, culminating in a significant increase in K+ efflux and a gradual loss of the cellular content with increase in the concentration of TSC-lap. In addition, we showed a significant reduction of ergosterol amount in the Pb18 membrane. These data reinforce the possible mechanism of action of this compound to be closely associated with ergosterol biosynthesis and reaffirms the antifungal potential of TSC-lap against Paracoccidioides spp.


Subject(s)
Antifungal Agents/pharmacology , Cell Membrane/drug effects , Naphthoquinones/pharmacology , Paracoccidioides/drug effects , Thiosemicarbazones/pharmacology , Animals , Ergosterol/biosynthesis , Macrophages/drug effects , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Paracoccidioidomycosis/drug therapy , Paracoccidioidomycosis/microbiology , Phagocytosis/drug effects
5.
J Fungi (Basel) ; 4(4)2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30545053

ABSTRACT

Candidiasis is an opportunistic fungal infection with Candida albicans being the most frequently isolated species. Treatment of these infections is challenging due to resistance that can develop during therapy, and the limited number of available antifungal compounds. Given this situation, the aim of this study was to evaluate the antifungal activity of four thiazolylhydrazone compounds against C. albicans. Thiazolylhydrazone compounds 1, 2, 3, and 4 were found to exert antifungal activity, with MICs of 0.125⁻16.0 µg/mL against C. albicans. The toxicity of the compounds was evaluated using human erythrocytes and yielded LC50 > 64 µg/mL. The compounds were further evaluated using the greater wax moth Galleria mellonella as an in vivo model. The compounds prolonged larval survival when tested between 5 and 15 mg/kg, performing as well as fluconazole. Compound 2 was evaluated in murine models of oral and systemic candidiasis. In the oral model, compound 2 reduced the fungal load on the mouse tongue; and in the systemic model it reduced the fungal burden found in the kidney when tested at 10 mg/kg. These results show that thiazolylhydrazones are an antifungal towards C. albicans with in vivo efficacy.

6.
J Glob Antimicrob Resist ; 14: 287-293, 2018 09.
Article in English | MEDLINE | ID: mdl-29715565

ABSTRACT

OBJECTIVES: Candida albicans is a commensal organism and opportunistic pathogen associated both with superficial (mucosal and cutaneous) and systemic infections. Extensive use of antifungal agents has led to reduced susceptibility to the few existing drugs, which has encouraged the search for novel antifungal agents. Therefore, the present study investigated the antifungal activity of 2,6-bis[(E)-(4-pyridyl)methylidene]cyclohexanone (PMC) against C. albicans. METHODS: The in vitro activity of PMC was evaluated against C. albicans. Additionally, an invertebrate infection model in Caenorhabditis elegans as well as two infected murine models of oral and systemic candidiasis were used to determine the antifungal efficacy of PMC in vivo. RESULTS: Minimum inhibitory concentrations (MICs) of PMC ranged from 4-32µg/mL against nine clinical and two reference C. albicans isolates. Interestingly, PMC inhibited filamentation in vitro at subinhibitory concentrations similar to fluconazole. PMC also showed low toxicity against murine macrophages and human erythrocytes. In the invertebrate infection model, PMC was efficient in prolonging survival of C. elegans infected with C. albicans SC5314. Treatment with PMC was efficient both in murine models of systemic and oral candidiasis and was similar to that observed with conventional drug treatments (nystatin and fluconazole). CONCLUSIONS: The results of this study indicate the therapeutic potential of PMC as it was able to inhibit filamentation of C. albicans in vitro. These alterations to the fungi by PMC resulted in a reduction of oral and systemic infection in mice. In conclusion, we present promising evidence of the anticandidal activity of PMC in vitro and in vivo.


Subject(s)
Antifungal Agents/chemical synthesis , Candida albicans/drug effects , Candidiasis/drug therapy , Cyclohexanones/chemical synthesis , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Caenorhabditis elegans , Cyclohexanones/chemistry , Cyclohexanones/pharmacology , Disease Models, Animal , Drug Resistance, Fungal/drug effects , Female , Fluconazole/pharmacology , Humans , Mice , Microbial Sensitivity Tests
7.
J Antimicrob Chemother ; 70(3): 841-5, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25362572

ABSTRACT

BACKGROUND: Chalcones are an important class of natural compounds that have been widely applied as synthons in synthetic organic chemistry and possess diverse and interesting biological properties. METHODS: We conducted tests with the synthetic substances 6-quinolinyl N-oxide chalcones 4c and 4e to determine their antifungal activity against several isolates of Paracoccidioides spp. and their activity in a murine model. We also determined whether the chalcones interacted with other drugs or interfered with the morphology of Paracoccidioides brasiliensis (Pb18) yeast cells. RESULTS: We verified that the substances were active against Paracoccidioides spp., but we did not show an interaction with the drugs tested when only the fractional inhibitory concentration index values were considered individually. We observed that the substances induced in vitro morphological changes. Compounds 4c and 4e showed activity similar to itraconazole in treated mice, as demonstrated by their ability to reduce the number of cfu recovered from the lungs. Histopathological analysis showed that animals treated with 4c presented fewer areas containing inflammatory infiltrate and larger areas of preserved lung tissue, whereas animals treated with itraconazole showed accumulation of inflammatory infiltrate and some granulomas. Mice treated with 4e exhibited inflammation that compromised the tissue. CONCLUSIONS: The results presented in this paper confirm the antifungal potential of the chalcones tested. The chalcone 4c was the more effective at controlling the disease in mice and this compound could be a candidate for future studies of the treatment of paracoccidioidomycosis.


Subject(s)
Antifungal Agents/therapeutic use , Chalcones/therapeutic use , Paracoccidioides/drug effects , Paracoccidioidomycosis/drug therapy , Quinolines/therapeutic use , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Colony Count, Microbial , Disease Models, Animal , Histocytochemistry , Lung/microbiology , Lung/pathology , Male , Mice, Inbred BALB C , Molecular Structure , Oxides/chemistry , Oxides/pharmacology , Oxides/therapeutic use , Quinolines/chemistry , Quinolines/pharmacology , Treatment Outcome
8.
Mem Inst Oswaldo Cruz ; 108(3)2013 May.
Article in English | MEDLINE | ID: mdl-23778660

ABSTRACT

Lapachol was chemically modified to obtain its thiosemicarbazone and semicarbazone derivatives. These compounds were tested for antimicrobial activity against several bacteria and fungi by the broth microdilution method. The thiosemicarbazone and semicarbazone derivatives of lapachol exhibited antimicrobial activity against the bacteria Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentrations (MICs) of 0.05 and 0.10 µmol/mL, respectively. The thiosemicarbazone and semicarbazone derivatives were also active against the pathogenic yeast Cryptococcus gattii (MICs of 0.10 and 0.20 µmol/mL, respectively). In addition, the lapachol thiosemicarbazone derivative was active against 11 clinical isolates of Paracoccidioides brasiliensis, with MICs ranging from 0.01-0.10 µmol/mL. The lapachol-derived thiosemicarbazone was not cytotoxic to normal cells at the concentrations that were active against fungi and bacteria. We synthesised, for the first time, thiosemicarbazone and semicarbazone derivatives of lapachol. The MICs for the lapachol-derived thiosemicarbazone against S. aureus, E. faecalis, C. gattii and several isolates of P. brasiliensis indicated that this compound has the potential to be developed into novel drugs to treat infections caused these microbes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Naphthoquinones/pharmacology , Semicarbazones/pharmacology , Thiosemicarbazones/pharmacology , Cryptococcus gattii/drug effects , Enterococcus faecalis/drug effects , Microbial Sensitivity Tests , Paracoccidioides/drug effects , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...